A role for tubular networks and a COP I-independent pathway in the mitotic fragmentation of Golgi stacks in a cell-free system

نویسندگان

  • T Misteli
  • G Warren
چکیده

Golgi stacks were previously shown to be converted into tubular networks when incubated in mitotic cytosol depleted of the coatomer subunit of COP I coats (Misteli and Warren, 1994). Similar, though smaller, networks are now shown to be an early intermediate on the Golgi fragmentation pathway both in vitro and in vivo. Their appearance mirrors the disappearance of Golgi cisternae and at their peak they constitute 35% of total Golgi membrane. They are consumed by two pathways, the first involving the budding of COP I-coated vesicles described previously (Misteli and Warren, 1994). The second involves a COP I-independent mechanism that leads eventually to a vesicle fraction that is larger in size and more heterogeneous than that produced by the COP I-mechanism. We suggest that both pathways operate concurrently at the onset of mitotic fragmentation. The COP I-independent pathway converts cisternae into tubular networks that then fragment. The COP I-dependent pathway partially consumes first the cisternae at the beginning of the incubation and then the tubular networks that form from them.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

COP-coated vesicles are involved in the mitotic fragmentation of Golgi stacks in a cell-free system

Rat liver Golgi stacks fragmented when incubated with mitotic but not interphase cytosol in a process dependent on time, temperature, energy (added in the form of ATP) and cdc2 kinase. The cross-sectional length of Golgi stacks fell in the presence of mitotic cytosol by approximately 50% over 30 min without a corresponding decrease in the number of cisternae in the stack. The loss of membrane f...

متن کامل

The Golgi mitotic checkpoint is controlled by BARS-dependent fission of the Golgi ribbon into separate stacks in G2.

The Golgi ribbon is a complex structure of many stacks interconnected by tubules that undergo fragmentation during mitosis through a multistage process that allows correct Golgi inheritance. The fissioning protein CtBP1-S/BARS (BARS) is essential for this, and is itself required for mitotic entry: a block in Golgi fragmentation results in cell-cycle arrest in G2, defining the 'Golgi mitotic che...

متن کامل

Mitotic disassembly of the Golgi apparatus in vivo.

Populations enriched in prophase cells were obtained either by using a cell line with a temperature-sensitive mutation in the mitotic kinase, p34cdc2, or by treating cells with olomoucine, an inhibitor of this kinase. Both methods resulted in efficient and reversible block of the cells at the G2/M boundary. After cells were released from the cell cycle block, the morphological changes to the Go...

متن کامل

Reassembly of Golgi stacks from mitotic Golgi fragments in a cell-free system

Rat liver Golgi stacks were incubated with mitotic cytosol for 30 min at 37 degrees C to generate mitotic Golgi fragments comprising vesicles, tubules, and cisternal remnants. These were isolated and further incubated with rat liver cytosol for 60 min. The earliest intermediate observed by electron microscopy was a single, curved cisterna with tubular networks fused to the cisternal rims. Elong...

متن کامل

I-7: Maternal Signalling to the Placenta

Background: Though it is well established that maternal blood-borne signals influence highly the growth of the placenta, the mechanisms are not known. In vitro trophoblast culture models are limited by an inability to reconstruct the polarised bilayer of the human hemochorial placenta. We have used a first trimester villous tissue explant system to investigate how growth factors interact with p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 130  شماره 

صفحات  -

تاریخ انتشار 1995